Investigation of the Effect of Mini-trampoline Exercises on Body Composition and Balance

Aytül EYNUR

Kütahya Dumlupınar University Faculty of Sport Sciences, Kütahya/TÜRKİYE https://orcid.org/0009-0003-8279-4536

aytul.eynur@dpu.edu.tr

Mustafa Said ERZEYBEK

Kütahya Dumlupınar University Faculty of Sport Sciences, Kütahya/TÜRKİYE

https://orcid.org/0000-0003-4427-4911

msaid.erzeybek@dpu.edu.tr

Abstract

This study aims to investigate the impact of twelve weeks of mini trampoline exercises on body composition and balance in women aged 18 and older. The study included 15 female athletes in the experimental group and 16 female athletes in the control group, aged 18-24, who regularly engaged in mini trampoline exercise. Height, weight, general body mass index (BMI), fat mass, fat-free mass (FFM), and body fat distribution in the torso, right arm, left arm, right leg, and left leg were measured using a Tanita device before exercise (pre-test) and 12 weeks after exercise (post-test). Measurements of mass (fat), fat-free mass (FFM), and Y balance test values for the right and left legs were also recorded. The exercise program was conducted three times weekly for twelve weeks, with each session lasting sixty minutes, inclusive of a warm-up and cool-down phase. In the data analyzes Paired samples t-test was utilized for intra-group (pre-test-post-test) comparisons, while an independent samples t-test was employed for inter-group (experiment-control) comparisons. All analyses in the study were performed using the SPSS 25.0 software, and the variables were assessed at a 95% confidence level. The analyzed results indicate that the post-test averages of the control group were statistically significantly greater than those of the experimental group (p<.05). The post-test and balance results averages in all measurements for both groups were statistically significantly greater than the pre-test averages (p < .05). The study concluded that mini trampoline exercise significantly improved body mass index values and balance in women over 18 years of age. This aerobic exercise enhances body composition and balance; therefore, it is advisable for individuals to perform it under the supervision of a sports trainer.

Key Words: Mini trampoline, exercise, body mass index

1. INTRODUCTION

Mini trampoline rebound exercise (MRE) is a long-known and very popular fitness exercise. As cited in Cugusi et al. (2017), the first research in this field was conducted by Carter (1979) and White (1980). First, the authors tried to outline the characteristics of rebound when describing the effects on the human body. Later, other studies conducted by Bhattacharya et al. (1980) confirmed the beneficial effects of this exercise. Special training on the human body, especially in humans, has been subjected to the absence of gravity (cited in Cugusi et al., 2017).

Minitramboline exercises are defined as exercises that are considered as jumping or rebounding from the ground. This exercise uses activities involving choreographic arrangements of locomotor movements to a rhythm supported by music on a flexible jumping surface (Ambruster ve Yoke, 2014; Heyward ve Gibson, 2014; Hertling ve Kessler, 2006). The presence of music, the trainer's aerobic exercise expertise play a very important role in ensuring that the exercise creates the necessary workload and realises the expected gain from the exercise. Mini trampoline exercises are evaluated as a study showing that the development of many different biomotor and physiological characteristics is supported and that the activities have positive responses in many physiological systems, especially postural responses are emphasised in terms of the difference of the moving environment in the dynamic approach of the skill (Acton, 2013; Fee, 2011; Calbom 2014; Triveri, 2021; Fetzner, 2020). It is also seen that exercise is recommended in nutrition and health applications, taking into account the competence of the exercise and the characteristics within its sphere of influence, as well as the environment variability in the realisation of the skill (Belen, 2005; Calbom, 2018; LaGreca, 2021).

Trampoline is an entertainment and sports equipment that has the ability to bounce thanks to the connection of springs within a frame. Recreational use of trampolines is becoming increasingly widespread around the world, and research on their effects is increasing (Esposito and Esposito, 2009). Mini-trampoline II, patented by George Nissan in 1936. During World War II, it was used to improve pilots' spatial orientation and balance, and after the war it was used effectively in schools and competitive sports (Walker, 2000). The Chartered Physiotherapy Society (Physios) in the UK has stated that mini trampolines are a great way to exercise as long as they are used safely and can be used as an effective tool to improve balance and coordination as well as boost self-confidence and also provide a sense of achievement. The first study on mini-trampoline exercise was commissioned by NASA in 1978. An attempt was made to find the best exercise to prevent shortness of breath while astronauts were in space, and eight young male astronauts participated in this study. Heart rates (HR) and oxygen consumption (VO₂) were analyzed while the subjects were running and bouncing on the minitrampoline, and as a result, mini-trampoline training was found to be a greater biomechanical stimulus than running on the treadmill (Bhattacharya et al., 1980). Mini trampoline exercises consist of a multicomponent approach that is likely to affect many other physical factors other than strength, such as body stability, muscle coordinative responses, joint movement amplitudes and spatial integration. Unusual new exercises are initially associated with some inefficient accompanying movements. These effects are suppressed by facilitation and movement patterns become more efficient through neural adaptation expressed by improvement in intra- and inter-muscular coordination. Trampoline interventions have been shown to improve muscular strength, balance, motor skills, and physical functioning in adults and children, and compared to typical movement environments in disabled children, a mini trampoline provides an elastic surface with reduced stiffness for jumping.

Trampoline exercises are useful in teaching diving movements such as somersaults, some athletics and ski movements; On the other hand, trampoline exercises are used as effective tools in improving coordination, space-time perception and reaction time (Sovelius et al., 2006; Schevchenko et al., 2008). Repeated jumps on the trampoline can reduce the risk of injury and landing trauma, it is also known that plyometric exercises can be quite stressful for joints and muscles and can cause injuries (Hill et al., 2011; Meylan and Malatesta, 2009). While many coaches state that trampoline exercise is essentially an aerobic exercise that can improve aerobic capacity, there are no studies that can confirm the effects of trampoline exercise on strength, aerobic capacity and other parameters. Moreover, the common opinion of gymnastics coaches is that trampoline exercise has negative effects on strength and power.

The mini trampoline has been promoted as a useful piece of equipment for exercising all different parts of the body. A trampoline allows a person to bounce on one or both legs with a variety of upper and

lower extremity movements. There have been recent studies proving the benefits of mini-trampoline exercise, which is considered a fitness enhancer. In mini-trampoline exercise, the cardio-respiratory system works harder as it causes an increase in both heart and respiratory rate against the increasing effect of gravity as well as the demand on the muscles to support the body (Smith and Cook, 2007). Increased heart and respiratory rate causes venous return and increased lymphatic drainage (Tortora and Grabowski, 2003). The use of an unstable surface increases sensory stimulation between the skin and joints and stimulates balance reactions through stimulation of postural mechanisms. Using a trampoline in this way can help improve balance and develop protective and saving reactions (Carr and Shepherd, 1998). It has also been reported that this exercise can increase the explosive power of children's lower extremities (Atikovic et al., 2018).

Although trampoline training is not a new method, the use of equipment has increased recently. Currently, the most popular method involves jumping activities on a flexible surface such as a mini trampoline (Lemos et al., 2007), Kidgell et al., 2007; Jensen et al., 2013). The flexible surface of the equipment is very integrative and challenging on the neuromuscular system. The increase in oxygen capacity and jumping distance, as well as the decrease in body weight and body fat percentage, are important for both general fitness and athletic performance. It is known that aerobic activities such as jogging, long-distance running, walking and dancing are effective in increasing oxygen capacity and reducing body weight (Reeves et al., 1991; Talanian et al., 2007; Edvardsen et al., 2011). Previous studies have been conducted showing that mini-trampoline exercise reduces the body fat percentages of healthy and unhealthy individuals. In this study, unlike the previous ones, we tried to examine whether mini trampoline exercise affects body composition and balance, as well as whether the exercise affects the body more at the beginning or after the last measurements by taking measurements after 12 weeks.

2. METHOD

This section encompasses details regarding the research's objective, the primary issue, subsidiary issues, research framework, research population, sample, research participants, data collection instruments, data acquisition, and statistical analysis of the gathered data. This study aims to investigate the impact of twelve weeks of mini trampoline exercises on body composition and balance in women aged 18 and older.

Research Model

The present study, grounded in the quantitative research paradigm, employs a quasi-experimental design with a pretest-posttest control group to compare data from the control and experimental groups before and after a 12-week mini trampoline exercise intervention.

Study Group

The study comprised 15 female athletes in the experimental group and 16 female athletes in the control group, aged 18-24, who consistently participated in mini trampoline exercises for a duration of 12 weeks.

The mean age of the participants was 20.47 years (minimum 19, maximum 24), and the average height was 163.33 cm (minimum 154 cm, maximum 174 cm). The ages of 16 female athletes in the control group ranged from a minimum of 19 to a maximum of 23, with an average age of 20.81. The height ranged from a minimum of 157 to a maximum of 174, with an average of 165.38.

Data Collection Tools/Techniques

To collect the research data, the form created by the researcher was evaluated on the Tanita MC 780 ST model (BMI) Body composition values and Y Balance Test Kit (Alpmed) brand model equipment.

TANITA MC 780 ST

Figure 1. Tanita

Figure 2. Mini trampoline

Figure 3. Y balance test

Data Analysis

Initially, an analysis for extreme values and outliers was conducted on the data, revealing no extreme or outlier values. Subsequently, descriptive analyses were performed to ascertain the minimum, maximum, and arithmetic means of the demographic characteristics of the research groups. Subsequently, to evaluate the appropriateness and assumptions of parametric tests, the Kolmogorov-Smirnov and Shapiro-Wilk statistics for all applications and measurements of the experimental and control groups were analyzed, confirming the suitability of parametric tests (p > .05). Consequently, a paired samples t-test was utilized for intra-group (pre-test-post-test) comparisons, while an independent samples t-test was employed for inter-group (experiment-control) comparisons. All analyses in the study were performed using the SPSS 25.0 software, and the variables were assessed at a 95% confidence level.

3. RESULTS

Variable Measurement Χ \mathbf{SS} t p 5.999 Body **Pre-Test** 55.16 1.279 .222 Experimental Weight Post-Test 54.86 6.086 Pre-Test 20.70 2.159 n=15 BMI 1.090 .294 Post-Test 20.60 2.328 Body **Pre-Test** 60.14 10.136 -1.469 .162 Weight Post-Test 60.59 10.195 Control n=16 **Pre-Test** 21.94 3.312 BMI -1.225 .239 Post-Test 22.08 3.359

Table 1. Within-group comparison of pre- and post-test measurements of general skills in experimental and control groups

A dependent groups t-test was performed to compare the pre-test and post-test general skills within the experimental and control groups. The analysis revealed no statistically significant difference in body weight and BMI values between the pre-test and post-test of the two groups (p>.05).

groups						
	Variable	Group	<u>X</u>	SS	t	р
	D - J 147 1-1	Experimental	55.16	5.999	1.652	100
Due Teet	Body Weight	Control	60.14	10.136	-1.652	.109
Pre Test	DM	Experimental	20.70	2.159	1 000	001
	BMI	Control	21.94	3.312	1.223	.231
	De J. Misieht	Experimental	54.86	6.086	1 004	070
DestTest	Body Weight	Control	60.59	10.195	1.884	.070
Post Test	DMI	Experimental	20.60	2.328	1.405	1/5
	BMI	Control	22.08	3.359	1.425	.165

Table 2. Intergroup comparison of pre- and post-tests of general skills of experimental and control groups

An independent groups t-test was performed to compare the general skills of the experimental and control groups. No statistically significant difference was found in body weight and BMI comparisons between the groups in both the pre-test and post-test (p > .05).

Table 3. Within-Group comparison of pre- and post-test measurements of general body characteristics of experimental and control groups

	Variable (n=15)	Measurement	<u>X</u>	SS	t	р
	Fat Free Mass	Pre-Test	43.83	3.571	1.595	.133
	Kg	Post Test	44.23	3.329	-1.393	.155
Experime	Muscle -Kg	Pre-Test	41.42	3.433	3.743	.002*
ntal n=15	Muscle -Kg -	Post Test	42.13	3.127	-3./43	.002
	Fat-Kg -	Pre-Test	11.44	4.095	- 4.282	001*
		Post Test	10.55	4.087		.001*
	Fat Free Mass	Pre-Test	44.61	4.528	2.012	0(2
	- Kg	Post Test	45.01	4.590	2.012	.063
Control	Est Ve	Pre-Test	41.75	4.251	0.41	.968
n=16	Fat-Kg —	Post Test	41.74	4.560	041	.968
	Est Ve	Pre-Test	16.17	6.322	424	(79
	Fat-Kg –	Post Test	16.06	6.093	424	.678

*p<.05

Upon examination of the table, it is evident that the experimental group's post-test average muscle mass (X: 42.13 kg) is statistically significantly greater than the pre-test average (X: 41.42 kg), while the pre-test average fat mass (X: 11.44 kg) is statistically significantly higher than the post-test average (X: 10.55 kg). p < 0.05 No significant difference was observed in fat-free mass between pre-test and post-test values (p>). The analysis determined that there was no statistically significant difference in lean mass, muscle kg, and fat kg values between the pre-test and post-test in the control group (p>.05).

Table 4. Intergroup comparison of pre- and post-test measurements of general body characteristics of
experimental and control groups

	Variable	Measurement	<u>X</u>	SS	t	р
	Fat Free Mass	Experimental	43.83	3.571	F21	.600
	Kg	Control	44.61	4.528	531	.000
PreTest	Musele Ve	Experimental	41.42	3.433	242	.811
	Muscle-Kg -	Control	41.75	4.251	242	
	Fat-Kg -	Experimental	11.44	4.095	2.450	.021*
		Control	16.17	6.322		
Post Test	Fat Free Mass	Experimental	44.23	3.329	538	.595
	Kg	Control	45.01	4.590	338	.395
	Muscle-Kg	Experimental	42.13	3.127	.270	.789

	Control	41.74	4.560		
T + K	Experimental	10.55	4.087		006*
Fat-Kg	Control	16.06	6.093	2.934	.006*

*p<.05

The independent groups t-test revealed that the mean fat mass in kilograms for the control group (X: 16.17) was statistically greater than that of the experimental group (X: 11.44) in the pre-test (t = -2.450, p < .05). In the post-test averages, the fat kg control group (X:16.06) was statistically higher to the experimental group (X:10.55) (t=-2.934, p<.05). No significant difference was found in the average lean mass (kg) and muscle mass (kg) between the groups in the pre-tests and post-tests.

Table 5. Within-Group comparison of pre- and post-test measurements of experimental group Tanita characteristics

	Variable (n=15)	Measurement	<u>X</u>	SS	t	р
	Maaala Ka	Pre-Test	24.43	2.195	-2.442	.029*
	Muscle Kg -	Post Test	24.87	2.018	-2.442	.029*
Tanita	EatVa	Pre-Test	5.20	1.944	2.237	.042*
TRUNK	Fat Kg -	Post Test	4.73	2.082	2.237	.042
	Eat Erros Va	Pre-Test	25.73	2.311	-2.548	.023*
	Fat Free Kg –	Post Test	26.23	2.126	-2.548	.025
	Maaala Ka	Pre-Test	1.98	.223	-2.125	.052*
	Muscle Kg	Post Test	2.04	.237	-2.125	.032
Tanita	Eat Va	Pre-Test	.54	.276	2.148	.050*
Right Arm	Fat Kg –	Post Test	.49	.272	2.140	.050
	Eat Erros Va	Pre-Test	2.10	.223	-1.080	.298
	Fat Free Kg –	Post Test	2.12	.231	-1.080	.270
	Muscle Kg –	Pre-Test	6.57	.385	-2.255	.041*
		Post Test	6.69	.445	-2.255	.041
Tanita	Fat Kg –	Pre-Test	3.01	.670	.117	.909
Right Leg		Post Test	3.00	.729	.117	.709
	Est Esse Ka	Pre-Test	7.04	.471	.671	E12
	Fat Free Kg –	Post Test	6.99	.412		.513
	Mussle Va	Pre-Test	1.92	.247	1.(05	.126
	Muscle Kg	Post Test	1.97	.223	-1.625	.120
Tanita left	Eat Va	Pre-Test	.57	.279	1.680	.115
Arm	Fat Kg -	Post Test	.51	.306	1.000	.115
	Fat Free Kg -	Pre-Test	2.04	.248	881	.393
	rat riee Ng	Post Test	2.06	.249	001	.393
	Mucele Ka	Pre-Test	6.46	.396	-3.045	.009*
	Muscle Kg	Post Test	6.60	.465	-3.043	.009
Tanita Left	Fat Va	Pre-Test	2.91	.627	.268	.792
Leg	Fat Kg –	Post Test	2.90	.661	.200	.792
	Eat Erros Va	Pre-Test	6.91	.486	1.016	207
	Fat Free Kg -	Post Test	6.84	.422	1.016	.327

*p<.05

A dependent groups t-test was utilized to compare the intra-group pre-test and post-test TANITA measurements of the experimental group. The analysis revealed that the post-test averages for trunk muscle kg and fat-free kg were statistically significantly elevated compared to the pre-test averages, while the pre-test average for fat kg was statistically significantly greater than the post-test average (p < .05). The post-test average muscle mass in the right arm was statistically significantly greater than the pre-test average, while the pre-test average fat mass was statistically significantly higher than the post-test average (p < .05). The post-test mean muscle mass in the left leg was significantly greater than the

pre-test mean (p<.05). No statistically significant difference was found between the pre-test and post-test of other regions and values (p > .05).

Table 6. Within-Group	comparison o	f pre- a	and post-test	measurements	of control	group	Tanita
characteristics							

	Variable (n=16)	Measurement	<u>X</u>	SS	t	р
	Maaala Ka	Pre-Test	24.58	2.789	2.012	001*
	Muscle Kg	Post Test	24.10	2.471	3.913	.001*
Tanita	EstVa	Pre-Test	6.72	2.916	1 011	075
TRUNK	Fat Kg	Post Test	7.01	3.089	-1.911	.075
	Fat Free Kg	Pre-Test	25.74	2.879	1 100	270
	Fat Flee Kg	Post Test	25.95	2.852	-1.123	.279
	Mucele Ve	Pre-Test	1.99	.248	705	4.4.4
	Muscle Kg	Post Test	2.00	.248	785	.444
Tanita	E. U.	Pre-Test	.80	.418	400	
Right Arm	Fat Kg	Post Test	.81	.416	400	.695
	Est Esse V.	Pre-Test	2.09	.262	795	.439
	Fat Free Kg	Post Test	2.11	.284	795	
	March IV.	Pre-Test	6.72	.519	015	.428
	Muscle Kg	Post Test	6.74	.591	815	.428
Tanita	Fat Kg	Pre-Test	3.66	1.155	1.255	105
Right Leg		Post Test	3.74	1.112	-1.355	.195
	E. F. K.	Pre-Test	7.08	.547	-1.730	104
	Fat Free Kg	Post Test	7.17	.703		.104
	March IV.	Pre-Test	1.99	.312	2.222	0.07*
	Muscle Kg	Post Test	2.04	.329	-2.282	.037*
Tanita left	E . K	Pre-Test	.84	.391	1 1 (405
Arm	Fat Kg	Post Test	.82	.404	.716	.485
		Pre-Test	2.10	.329	0.642	04.0%
	Fat Free Kg	Post Test	2.15	.332	-2.643	.018*
		Pre-Test	6.60	.552	001	0.00
	Muscle Kg	Post Test	6.61	.567	221	.828
Tanita Left	E. U.	Pre-Test	3.57	1.044	1 107	054
Leg	Fat Kg	Post Test	3.66	1.069	-1.187	.254
	E. L. E	Pre-Test	6.96	.582	1.051	070
	Fat Free Kg	Post Test	7.00	.619	-1.951	.070

*p<.05

The dependent groups t-test was utilized to compare the pre-test and post-test TANİTA measurements within the control group. The analysis revealed that the pre-test average for the Tanita trunk (X: 24.58) exceeded the post-test average (X: 24.10) (t=3.913, p<.05). Conversely, the post-test average for the Tanita left arm muscle (X: 2.04) surpassed the pre-test average (X: 1.99) (t=-2.282, p>.05), and the post-test average for Tanita left arm lean mass (X: 2.15) was significantly greater than the pre-test average (X: 2.10) (t=-2.643, p<.05). It was determined to be markedly elevated. No statistically significant difference was observed between the pre-test and post-test results of other regions and values (p > .05).

Table 7. Intergroup comparison of pre-test measurements of Tanita characteristics of experimental and control groups

	Variable (n=15)	Group	<u>X</u>	SS	t	р
Tanita	Muada Va	Experimental	24.43	2.195	167	.869
TRUNK	Muscle Kg	Control	24.58	2.789	107	.009

	Eat Va	Experimental	5.20	1.944	-1.701	.100
	Fat Kg	Control	6.72	2.916	-1.701	.100
	Eat Erec Va	Experimental	25.73	2.311	006	.995
	Fat Free Kg	Control	25.74	2.879	006	.995
	Muscle Kg	Experimental	1.98	.223	047	.963
Tanita	wuscie Kg	Control	1.99	.248	047	.903
	Fat Kg	Experimental	.54	.276	-2.016	.053*
		Control	.80	.418	-2.010	.055
AIII	Fat Free Kg	Experimental	2.10	.223	.028	.977
	Fat Flee Kg	Control	2.09	.262	.028	
	Musels Va	Experimental	6.57	.385	900	.376
	Muscle Kg	Control	6.72	.519	900	.376
Tanita	Fat Kg	Experimental	3.01	.670	-1.918	.065
Right Leg	T at Kg	Control	3.66	1.155	-1.918	.005
	Fat Free Kg	Experimental	7.04	.471	234	.817
	Fat Flee Kg	Control	7.08	.547		.017
	Muscle Kg	Experimental	1.92	.247	690	.496
	wuscie Kg	Control	1.99	.312	090	.496
Tanita	Fat Kg	Experimental	.57	.279	-2.200	026*
left Arm	rat Kg	Control	.84	.391	-2.200	.036*
	Eat Eres Va	Experimental	2.04	.248	611	.546
	Fat Free Kg	Control	2.10	.329	011	.346
	Muscle Kg	Experimental	6.46	.396	848	.403
	wiuscie Kg	Control	6.60	.552	040	.403
Tanita	Fat Kg	Experimental	2.91	.627	-2.118	.043*
Left Leg	rat Ng	Control	3.57	1.044	-2.110	.043
	Fat Free Kg	Experimental	6.91	.486	268	.791
	rat free Ng	Control	6.96	.582	200	./91

*p<.05

When the table was examined, it was determined that the pre-test averages of the control group in tanita right arm fat kg, tanita left arm fat kg and tanita left leg fat kg were statistically significantly higher than the pre-test averages of the experimental group (p < .05).

Table 8. Intergroup comparison of post-test measurements of Tanita characteristics of experimental and control groups

	Variable (n=15)	Group	<u>X</u>	SS	t	р
	Maaala Ka	Experimental	24.87	2.018	.937	.356
	Muscle Kg	Control	24.10	2.471	.937	.356
Tanita	EatVa	Experimental	4.73	2.082	-2.396	.023*
TRUNK	Fat Kg	Control	7.01	3.089	-2.590	.025
	Est Erroy Va	Experimental	26.23	2.126	210	.752
Fat Free Kg	Fat Free Kg	Control	25.95	2.852	.318	.752
	Maaala Ka	Experimental	2.04	.237	.408	.686
T	Muscle Kg	Control	2.00	.248		
Tanita	E.L.V.	Experimental	.49	.272	0.515	010*
Right	Fat Kg	Control	.81	.416	-2.515	.018*
Arm	Eat Erroy Va	Experimental	2.12	.231	150	074
	Fat Free Kg	Control	2.11	.284	.159	.874
	Mussle Va	Experimental	6.69	.445	262	.795
Tanita	Muscle Kg	Control	6.74	.591	262	./90
Right Leg	Fat Va	Experimental	3.00	.729	2 1 (2	020*
	Fat Kg	Control	3.74	1.112	-2.162	.039*

		Eurorimontal	6.99	410		
	Fat Free Kg	Experimental		.412	862	.396
	0	Control	7.17	.703		
	Muscle Kg	Experimental	1.97	.223	761	.453
	Muscle Kg	Control	2.04	.329	701	.=55
Tanita	Fat Kg	Experimental	.51	.306	-2.404	.023*
left Arm		Control	.82	.404		.025
	Fat Free Ka	Experimental	2.06	.249	810	.425
	Fat Free Kg	Control	2.15	.332		
	Muscle Kg	Experimental	6.60	.465	079	.938
	Muscle Kg	Control	6.61	.567	079	.938
Tanita	Eat Va	Experimental	2.90	.661	2 255	026*
Left Leg	Fat Kg	Control	3.66	1.069	-2.355	.026*
	Eat Eres Va	Experimental	6.84	.422	820	408
	Fat Free Kg	Control	7.00	.619	839	.408

*p<.05

An independent groups t test was conducted to compare the posttests of the tanita measurements of the experimental and control groups. As a result of the test, İt was found that the post-test averages of the control group were statistically significantly higher than the post-test averages of the experimental group (p<.05).

Table 9. Within-Group comparison of pre- and post-test measurements of y-balance characteristics of experimental and control groups

		Variable (n=15)	Measurement	<u>X</u>	SS	t	р
Experimental		Left Foot	Pre-Test	60.27	4.773	0 201	000*
(n=15)		Anterior	Post Test	65.47 5.842		-8.301	.000*
	Right Foot	Left Foot	Pre-Test	88.60 7.199		7 017	000*
	Stationary	Posterolateral	Post Test	95.87	7.463	-7.917 .000	
		Left Foot	Pre-Test	84.07	9.161	0 212	000*
		Posteromedial	Post Test	90.60	8.542	-8.312	.000*
		Right Foot	Pre-Test	60.67	5.094	5 (00	.000*
		Anterior	Post Test	64.13	4.340	-5.698	
	LeftFoot	Right Foot	Pre-Test	86.53	8.634	12 201	.000*
	Stationary	Posterolateral	Post Test	94.33	7.335	-13.284	
		Right Foot	Pre-Test	85.60	8.749	6 5 40	0.0.0*
		Posteromedial	Post Test	91.33	8.474	-6.549	.000*
Control		Left Foot	Pre-Test	63.25	5.092	5 244	.000*
(n=16)	Right Foot Stationary	Anterior	Post Test	65.69	5.862	-5.344	
		Left Foot	Pre-Test	89.25	7.996	-9.733	.000*
		Posterolateral	Post Test	92.69	7.761	-9.755	.000
		Left Foot Posteromedial	Pre-Test	85.31	10.44	-3.471	
				03.31	2		.000*
			Post Test	88.81	9.425		
		Right Foot	Pre-Test	62.69	6.019	E 100	000*
		Anterior	Post Test	65.50 5.598		-5.192	.000*
	Left Foot	Right Foot	Pre-Test 87.63 6.571		7 002	000*	
	Stationary	Posterolateral	Post Test	92.06	7.280	-7.093	.000*
		Right Foot	Pre-Test	85.75 6.758		6 5 7 2	000*
		Posteromedial	Post Test	88.94	6.351	-6.573	.000*

*p<.05

Dependent groups t test was applied to compare the y balance test results of the experimental and control groups with the pre-test and post-test within the group. As a result of the analysis, it was concluded that the post-test averages in all measurements in both groups were statistically significantly higher than the pre-test averages (p < .05).

Table 10. Intergroup comparison of y balance pre- and post-test measurements of experimental and control groups

		Variable (n=15)	Measurement	<u>X</u>	SS	t	р
Pre test		Left Foot	Experimental	60.27	4.773	-1.680	.104
		Anterior	Control	63.25	5.092	-1.000	
	Right Foot Stationary	Left Foot	Experimental	88.60	7.199	237	.814
		Posterolateral	Control	89.25	7.996	237	
		Left Foot	Experimental	84.07	9.161	250	.727
		Posteromedial	Control	85.31	10.442	352	./ //
		Right Foot	Experimental	60.67	5.094	-1.006	.323
		Anterior	Control	62.69	6.019	-1.006	.323
	Left Foot	Right Foot	Experimental	86.53	8.634	200 (604
	Stationary	Posterolateral	Control	87.63	6.571	398	.694
		Right Foot	Experimental	85.60	8.749	054	050
		Posteromedial	Control	85.75	6.758	054	.958
Post test		Left Foot	Experimental	65.47	5.842	105	.917
		Anterior	Control	65.69	5.862	105	
	Righ tFoot	Left Foot	Experimental	95.87	7.463	1.161	.255
	Stationary	Posterolateral	Control	92.69	7.761	1.101	
		Left Foot	Experimental	90.60	8.542	EE0	FOF
		Posteromedial	Control	88.81	9.425	.552	.585
		Right Foot	Experimental	64.13	4.340	756	.456
		Anterior	Control	65.50	5.598	736	
	Left Foot	Right Foot	Experimental	94.33	7.335	96E	.394
	Stationary	Posterolateral	Control	92.06	7.280	.865	
		Right Foot	Experimental	91.33	8.474	205	279
		Posteromedial	Control	88.94	6.351	.895	.378

*p<.05

When the table was examined, in the analysis results made to compare the y balance values of the groups, it was seen that there was no statistically significant difference between the groups in all measurements in both the pre-tests and post-tests (p>.05).

4. DISCUSSION

This study observed that mini-trampoline exercise significantly impacted the body mass indexes and balance exercises of women over 18 years old (p < .05). Various prior studies exist concerning this matter. Aalizadeh et al. (2016) discussed the impact of trampoline exercise on the anthropometric measurements and motor performance of adolescent students. The study determined that 20 weeks of trampoline training, comprising four physical activity sessions per week for students aged 11-14 years, significantly impacted body fat percentage reduction and anaerobic physical fitness improvement. They noted that trampoline exercises can enhance students' health and motor performance levels. The findings of Cogoli et al. (1979) indicate that elevated G-force enhances lymphocyte activity. The lymphatic system transports immune cells throughout the body and facilitates immune function. Consequently, trampoline exercise is frequently advocated as a detoxifying and immune-enhancing

activity. Much of the scientific literature on trampolining highlights its enhancement of functional skills. Moreover, mini trampoline exercise is advantageous for individuals with type 2 diabetes and may be an effective method for managing cardiovascular risk in diabetic patients. Research indicates that exercises conducted on a mini trampoline present a minimal risk of injury (Grapton et al., 2013). Research endorses the recommendation for the safe utilization of trampolines to reduce injury risk in educational settings (Johnson et al., 2011).

The introduced exercises enhance muscular capacity in various manners, and researchers advocate for the inclusion of both strength and trampoline training programs in fighter pilots' physical training regimens (Kidgell et al., 2007). Another study indicates that mini trampoline exercises effectively enhance balance following a lateral ankle sprain (Aragao et al., 2011). Mini trampoline training enhanced seniors' capacity to recover balance during forward falls, with the improvement ascribed to an increased rate of hip moment generation (Kasmire et al., 2016). Heitkamp et al. (2001) previously reported that mini-trampoline exercises enhance balance and leg strength. Atılgan (2013) discovered that 1.5 hours of trampoline training, conducted twice weekly for 12 weeks, markedly enhanced the vertical jump, leg strength, and both dynamic and static balance in male gymnasts.

5. CONCLUSION AND RECOMMENDATIONS

While research on the impact of mini-trampoline exercise on waist-hip ratio has been limited, prior studies have examined its effects on BMI values and reported favorable outcomes. This study differs from prior studies in that the measurements were assessed as pre-test and post-test, both before the study and 12 weeks subsequent to its conclusion. The study demonstrated that 12-week mini-trampoline exercises for women over 18 years of age significantly improved BMI values and balance (p < 0.05). Consequently, mini-trampoline exercise is believed to aid individuals in fat reduction while preserving and enhancing muscle mass. This exercise should be conducted under the guidance of a qualified trainer to prevent injuries.

Author Contributions

Conception and design of the study: A.E, M.S.E., Data collection: A.E., Data analysis and interpretation: A.E., M.S.E., Drafting the article and/or its critical revision: A.E., Final approval of the version to be published: A.E., M.S.E.

Conflict of Interest

The authors declare any conflict of interest regarding the study and its publication.

Ethical Statement

The approval of the social and humanities research and publication ethics board was obtained from Kütahya Dumlupınar University (18.05.2022, 2022/05).

REFERENCES

- Aalizadeh, B., Mohammadzadeh, H., Khazani, A., & Dadras, A. (2016). Effect of a trampoline exercise on the anthropometric measures and motor performance of adolescent students. *Int J Prev Medicine*, 7(91).
- Acton, A. (2103). *Advances in exercise therapy research and application* (2013 Edition). United States of America: Scholarly Brief, Scholarly Editions.
- Angela Fetzner, D. (2020). *The Lymph: The body's purification plant*. United Kingdom: Babelcube Incorporated.
- Arabatzi, F. (2017). Adaptations in movement performance after plyometric training on minitrampoline in children. J. Sports Med. Phys. Fitness, 58(1-2), 66-72.
- Aragao, F. A., Karamanidis, K., Vaz, M. A., & Arampatzis, A. (2011). Minitrampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly. *J Electromyogr Kinesiology*, 21, 512-518.

- Atikovic, A., Mujanovic, A. N., Mehinovic, J., Mujanovic, E., & Bilalic, J. (2018). Effects of a mini trampoline exercise during 15 weeks for increasing the vertical jump performance. *Sport Spa*, *15*(1), 11-19.
- Atılgan, O. E. (2013). Effects of trampoline training on jump, leg strength, static and dynamic balance of boys. *Science of Gymnastics Journal*, *5*(2), 15-25.
- Beerse, M., & Wu, J. (2016). Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping, *J. Biomech.*, 49, 3306–3312.
- Belen, S. (2005). *Detox and revitalize: The holistic guide for renewing your body, mind, and spirit*. United States of America: Square One Publishers.
- Bhattacharya, E. P., McCutcheon, E. S., & Greenleaf, J. E. (1980). Body acceleration distribution and O2 uptake in humans during running and jumping. *J Appl Physiol.*, *49*, 881-884.
- Calbom, C. (2018). Sipping skinny: Drink away the pounds. United States of America: Charisma House.
- Calbom, C., Calbom, J. (2014). *Juicing, fasting, and detoxing for life: Unleash the healing power of fresh juices and cleansing diets.* United State of America: Grand Central Publishing.
- Carr, J. H., & Shepherd, R. B. (1998). *Neurological rehabilitation: Optimizing motor performance*. Butterworth Oxford: Heinemann.
- Cogoli, A., Valluchi, M., Reck, J., Müller, M., Briegleb, W., Cordt, I., & Michel, C. (1979). Human lymphocyte activation is depressed at low-g and enhanced at high-g. *Physiologist*, 22, 29-30.
- de Oliveira, M. R., da Silva, R. A., Dascal, J. B., & Teixeira, D. C. (2014). Effect of different types of exercise on postural balance in elderly women: A randomized controlled trial. *Arch. Gerontol. Geriatr.*, 59, 506–514. <u>https://doi.org/10.1016/j. archger.2014.08.009</u>.
- Edvardsen, E., Ingjer, F., & Bø, K. (2011). Fit women are not able to use the whole aerobic capacity during aerobic dance. *J Strength Condition Res.*, 25, 3479-3485.
- Esposito, P. W., & Esposito, L. M. (2009). There emergence of the trampoline as a recreational activity and competitive sport. *Curr. Sports Med. Rep.*, *8*(5), 273-277.
- Farley, C. T., Houdijk, H. H. P., Van Strien, C., & Louie, M. (1998). Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses, *J. Appl. Physiol.*, *85*, 1044–1055.
- Fee, E. (2011). One Hundred Years Young the Natural Way: Body, Mind, and Spirit Training. United Kingdom: Trafford Publishing.
- Ferris, D. P., & Farley, C. T. (1997). Interaction of leg stiffness and surface stiffness during human hopping. *J. Appl. Physiol.*, *82*, 15–22.
- Giagazoglou, P., Sidiropoulou, M., Mitsiou, M., Arabatzi, F., & Kellis, E. (2015). Can balance trampoline training promote motor coordination and balance performance in children with developmental coordination disorder? *Res. Dev. Disabil.*, 36, 13–19, <u>https://doi.org/10.1016/j.ridd.2014.09.010</u>.
- Grapton, X., Lion, A., Gauchard, G. C., Barrault, D., & Perrin, P. P. (2013). Specific injuries induced by the practice of trampoline, tumbling and acrobatic gymnastics. *Knee Surg Sports Traumatol Arthrosc.*, 21, 494-499.
- Heitkamp, H. C., Horstmann, T., Mayer, F., Weller, J., & Dickhuth, H. H. (2001). Gain in strength and muscular balance after balance training. *Int. J. Sports Med.*, 22, 285–290. <u>https://doi.org/10.1055/s-2001-13819</u>.
- Hertling, D., Kessler, R. M. (2006). Management of Common Musculoskeletal Disorders: Physical Therapy Principles and Methods. Birleşik Krallık: Lippincott Williams & Wilkins.
- Heyward, V. H., Gibson, A. L. (2014). Advanced Fitness Assessment and Exercise Prescription. United Kingdom: Human Kinetics.
- Hill, J., & Leiszler, M. (2011). Review and role of plyometrics and core rehabilitation in competitive sport. *Curr Sports Med Rep.*, *10*, 345-351.
- Jensen, P., Scott, S., Krustrup, P., & Mohr, M. (2013). Physiological responses and performance in a simulated trampoline gymnastics competition in elite male gymnasts. *Journal of Sports Sciences*, *31*, 1761–1769.

- Johnson, B. A., Salzberg, C. L., & Stevenson, D. A. (2011). Asystematic review: Plyometric training programs for young children. *J Strength Cond Res.*, 25, 2623-2633.
- Karakollukçu, M., Aslan, C. S., Paoli, A., Bianco, A., & Sahin, F. N. (2015). Effects of mini trampoline exercise on male gymnasts' physiological parameters: A pilot study. *J. Sports Med. Phys. Fitness* 55(7-8), 730-734.
- Kasmire, K. E., Rogers, S. C., & Sturm, J. J. (2016). Trampoline park and home trampoline injuries. *Pediatrics*, 138, e20161236.
- Kidgell, D. J., Horvath, D. M., Jackson, B. M., & Seymour, P. J. (2007). Effect of six weeks of dura disc and mini-trampoline balance training on postural sway in athletes with functional ankle instability. J Strength Cond Res., 21(2), 466-469.
- Kugler, P. N., Shaw, R. E., Vincente, K. J., Kinsella-Shaw, J. (1990). Inquiry into intentional systems I: Issues in ecological physics. *Psychol. Res.*, 52, 98–121, <u>https://doi.org/10.1007/BF00877518</u>
- LaGreca, B. (2021). Cancer, Stress & Mindset: Focusing the Mind to Empower Healing and Resilience. United Kingdom: Empowered Patient Press.
- Lemos, A., Simao, R., Miranda, F., & Novaes, J. (2007). Acute influence of a mini trampoline class on squat. *Fit Perf J.*, *6*, 76–81.
- Meylan, C., & Malatesta, D. (2009). Effects of in-season plyometric training within soccer practice on explosive actions of young players. *J Strength Cond Res.*, 23, 2605-2613.
- Trivieri, L. (2021). No Doctors Required: 10 Keys To Creating and Maintaining Excellent Health Using Proven Self-Care Methods That Most Physicians Don't Know. (n.p.): Gatekeeper Press.
- Yoke, M. M., Armbruster, C., Armbruster, C. K. (2019). Methods of Group Exercise Instruction. United States of America: Human Kinetics.
- Reeves, B. D., & Darby, L. A. (1991). Comparison of VO2 and HR responses of college females during graded exercise tests: Treadmill vs dance exercise. *Med Sci Sports Exerc.*, 23(suppl 1), 843.
- Gupta, S., & Rao, B. K. S. D. (2011). Effect of strength and balance training in children with Down's syndrome: A randomized controlled trial. *Clin. Rehabil.* 25, 425–432.
- Schevchenko, I., Abramov, V. V., Gibson, P. T., & Omar, H. A. (2008). Medical super vision of young female athletes training in complex coordinational sports. *Int J Adolesc Med Health*, 20, 343-351.
- Smith, S., & Cook, D. (2007). Rebound Therapy. In: Rennie J, (Ed.)., Learning Disability Physical Therapy Treatment and Managenment - A Collaborative Approach (2nd Edition) (pp: 249-262). Chichester: John Wiley and Sons.
- Sovelius, R., Oksa, J., Rintala, H., Huhtala, H., Ylinen, J., & Siitonen, S. (2006). Trampoline exercise vs. strength training to reduce neck strain in fighter pilots. *Aviat Space Environ Med.*, 77, 20-25.
- Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. *J Appl Physiol.*, *102*, 1439–1447.
- Tortora, G. J., & Grabowski, S. R. (2003). *Principles of anatomy and physiology* (10th Edition). New York: John Wiley and Sons.
- Walker, R. (2000). Trambolin Tarihi [İnternet]. 4 Nisan 2020'de alıntı yapılmıştır. Erişim: <u>www.jumpsport.com.au/t-sh-history.aspx</u>.

Submitted	:	26.07.2024
Accepted	:	21.11.2024